MX SERIES POWER INVERTERS

MX SERIES FAMILY

- N+1 REDUNDANT
- EXPANDABLE
- REMOTE SWITCHING
- TRUE SINE WAVE
- "HOT" INSERTABLE
- 1000 WATT MODULES
- REMOTE METERING
- ADJ USTABLE POWER

TL900

EXELTECH manufactures the world's first truly redundant, modular inverter system; the most reliable inverter system available. No single malfunction will cause the inverter system to fail. Modules are "hot" insertable. Power levels are expandable, and modules can be added or replaced without interruption in power to your critical loads.

The MX system can be configured for power levels from 1 to 20KW with 120 Vac output. Up to 40 KW at 240 Vac bi-phase or 60 KW at 208 Vac 3 phase with many input and output voltages also available.

A control card and any number of additional 1000 Watt power modules combine to make a standard inverter. This type of system can be expanded as power requirements increase, and upgraded to be $\mathrm{N}+1$ redundant as desired.

The MX system is extremely compact and lightweight. Power modules weigh only 7 lbs. Each.

Output voltage is precisely regulated, so that no measurable voltage change occurs on the output as input voltage fluctuates. Similarly, less than 0.5 volt change in output voltage will occur when the output load varies from 0 to 100% of rated power. With distortion of 2% maximum, this inverter offers the cleanest sine wave power available.

Models are available which cover all standard battery systems. Custom models can be designed to meet your specific input voltage requirements.

MX SERIES MODULE DESCRIPTION

The Exeltech $\boldsymbol{M} \boldsymbol{X}$ Series of inverters is a modular system which can be assembled in many combinations to afford the user infinite flexibility. Options such as AC distribution, AC disconnect, metering, DC disconnect, DC distribution, transfer switch and maintenance bypass switch are also available; (see accessories).

The building blocks of the system are as follows:
1.) Power Module - A 1000 Watt slave power inverter. It requires drive signals from a Master Module or Control Card as described below. This module is the backbone of the inverter system.
2.) Master Module - A 1000 Watt power inverter which contains all the electronics necessary to operate.

Requires an enclosure to provide connections to the battery and AC output. It can also operate up to 19 slave Power Modules. If this module is used, the system cannot be fully redundant.
All MX systems require either a master module or at least one control card.
3.) Control Card - Generates all the signals necessary to operate up to 20 Power Modules. The card itself will not generate any AC output power nor does any power flow through it. This card can be paralleled with another Control Card to generate a redundant set of control signals to form the basis of a completely redundant inverter system.
All MX systems require either a master module or at least one control card.
4.) Alarm Card - Can be used in conjunction with a redundant or non redundant inverter to provide various alarm output signals via LED's and alarm contact closures. Must be included in redundant systems to detect failure of control card.
5.) Transfer Switch - Provides the same functions as the alarm card, plus provides a relay to transfer AC power to the load, from either the inverter or the utility input. Use only with systems 7 KW of or less.

The above modules can be placed in the following enclosures; Installations can either be free standing or in standard relay racks.
1.) 19 " cage assembly - Compatible with a 19 " relay rack. The smallest cage which can contain a redundant system. Available in the following configurations:
19A - Basic configuration for a redundant system. Holds up to 4 Power Modules, 2 Control Cards and either a Transfer Switch or an Alarm Card.
19B - Used as an expansion rack or may be used as an expandable, non redundant inverter, up to 5 KW . This configuration will not accept X-fer Switch, alarm card or control cards.
2.) 23 " cage assembly - Compatible with a 23 " relay rack.

23A - Basic configuration for a redundant system. Holds up to 5 Power Modules, 2 Control Cards and either a Transfer Switch or an Alarm Card.
23B - Used as an expansion rack or may be used as an expandable, non redundant inverter, up to 6 KW . This configuration will not accept X-fer Switch, alarm card or control cards.
3.) 7 " cage assembly - for 1 or 2 KW systems when redundancy is not required.

7C - Consists of 1 Transfer Switch and 1 Master Module.
This configuration will not accept an alarm card or control cards.
7B - Expandable up to 2KW. 1 Master Module and 1 Power Module.
This configuration will not accept X-fer switch, alarm card or control cards.
4). 9 " cage assembly- for $1-3 \mathrm{KW}$ systems when redundancy is not required.

9C - Consists of Transfer Switch, 1 Master Module and 1 Power Module.
This configuration will not accept an alarm card or control cards.
9B - Expandable up to 3KW. 1 Master Module and 2 Power Modules.
This configuration will not accept X-fer Switch, alarm card or control cards.

MX SERIES SYSTEM DESCRIPTION

The Exeltech $\boldsymbol{M} \boldsymbol{X}$ Series of inverters is available in three basic architectures; redundant, upgradable and expandable. Different options and sizes are available to fit varying applications. As a benefit of the $\boldsymbol{M} \boldsymbol{X}$ series modular design, power levels are expandable in any system, as power requirements increase.
1.) $\mathbf{N + 1}$ Redundant-Expandable Inverter System: For applications where reliability and maintainability are paramount, the $\mathrm{N}+1$ redundant system offers the most cost effective method of achieving redundancy and the ability to maintain the system while loads remain on line. All cards (except 12 Vdc) are "hot" insertable to allow maintenance without interrupting power to critical loads. Designing the power level with $\mathrm{N}+1$ number of power modules, allows for redundancy without necessitating the purchase of a duplicate system. (An A/B Buss option is available, which adds to system reliability).

A redundant system consists of:

2.) Upgradable Inverter System: The Upgradable system offers the flexibility to add a X-fer switch or alarm card and Full Redundancy for future requirements. A minimum system with as little as one control card and one power module can be upgraded in the future to include additional power modules, X-fer switch or alarm card and an additional control card for full redundancy (see figure II).

MX SERIES SYSTEM DESCRIPTION

Figure II.

1 ea. Cage assembly part \# 1A (19" cage) 2A (23" cage)

Options:

1 ea. X-fer Switch part \# G (100 Vac)

X (120 Vac)
Z (230 Vac)
1 ea. Alarm Card part \# H (100 Vac)

A (120 Vac)
F (230 Vac)
3.) Expandable inverter system:This configuration can be used as an independent inverter system (figure III), or to expand power levels of existing $\boldsymbol{M} \boldsymbol{X}$ systems (see stacked systems). By using one master module, a system may be expanded to include a X-fer switch and additional power modules(see figure IV). 1KW inverters with a X-fer switch use the 7"or 9" (part \# 7C, 9C) cage. 1KW, 2KW and 3KW inverters without a X-fer switch use the 7" or 9" (part number 7B, 9B) cage assembly.

Figure III.

MX SERIES SYSTEM PART NUMBER

Use the Design Chart to formulate the $\mathbf{1 5}$ digit model number.

EXELTECH MX SERIES
MODEL NUMBER
Step 1: Enter the two character code $]^{---------}$
Step 2: When a transfer switch or alarm card is used, enter the single character code for that card. 2nd and 3rd characters designate option level of transfer switch or alarm card. Enter 00 for standard module, if no alarm card or transfer switch use "B" configuration backplane, enter (***).
Step 3: Alpha character assigned by EXELTECH to represent changes or revision levels in racks, alarm cards, or transfer switch. Enter(-). EXELTECH will assign revision level. See revision level chart on www.exeltech.com for the most current revision list.
Step 4: Enter the two character code for Control Card(s) or Master Module. There is not an application where both are used. Enter $\left(\mathrm{M}^{*}\right)$ or $\left(\mathrm{C}^{*}\right)$ if only one is used.
Step 5: To designate power level, enter the number of power modules required. Redundant systems require continuous load rating plus one additional power module(* if none used).
Step 6: To designate output voltage of the power module required, enter the single character code(* if none used).
Step 7: Single alpha character assigned by EXELTECH represents changes or revision levels in Control Cards, Master Modules, or Power Modules. Enter (-). EXELTECH will assign revision level. See revision level chart on www.exeltech.com for the most current revision list.
Step 8: To designate input voltage, enter the single character from the VDC voltage chart below.

Step 9: Output frequency is designated by using the first number of the frequency (5 for $50 \mathrm{~Hz}, 6$ for $60 \mathrm{~Hz}, 4$ for 400 Hz).
Step 10: For options, enter two digit code. If no option, enter (00).
EXAMPLE: A redundant system with an alarm card, to fit a 23 " wide cage, for powering a 4000 watt continuous load, at 120 Vac , 60 Hz with 48 Vdc input would require the following model number...

2AA00ACC5P-4600

MX SERIES MODULE PART NUMBER

EXELTECH MX SERIES MODULE NUMBER

Step 1: Model number always starts with MX.
Step 2: To designate a cage assembly, enter the two character code from the design chart. When ordering a power module or master module, enter a " K ". If ordering any other module, enter an asterisk(*).
Step 3: To designate the type of module, enter the single character code from the design chart. To designate cage assembly, enter an asterisk(*).
Step 4: To designate input voltage, enter the single character code from the Vdc INPUT VOLTAGE
CHART below. If ordering an alarm card, transfer switch or cage assembly, enter an asterisk(*).
Vac nevi volitae chart

DC Volts	12	24	32	48	66	108

Step 5: Output frequency is designated by using the first number of the frequency (5 for $50 \mathrm{~Hz}, 6$ for $60 \mathrm{~Hz}, 4$ for 400 Hz). If ordering a transfer switch, alarm card, power module or cage assembly, enter an asterisk(*).
Step 6: This space designates current revision level, and is for EXELTECH use only. If no revision is in use for this module, no number or character will be used.
Step 7: To designate option, enter the code from the option chart below. If no option is required please leave blank.

OPTION CHART	
Option	Code
Conformal coating	07
Low idle current	08

MODULE EXAMPLES: A 12Vdc, 120Vac, 60 Hz master module would require the following module number... MXK-M-1-6-1

A $48 \mathrm{vdc}, 120 \mathrm{Vac}, 60 \mathrm{~Hz}$ power module with conformal coating option would require the following module number...
MXK-P-4-*-1-07
CAGE ASSEMBLY EXAMPLE: A 19" redundant cage, 120Vac would require the following module number:
MX1A-****-2

MX SERIES SYSTEMS DESIGN CHART

MX SYSTEMS DESIGN CHART								
SYSTEMS REQUIRED	CAGE ASSY SIZE AND CONFIG.	Use X-fer or Alarm Card			Use CC or MM		POWER MODULE	AVAIL $\underset{\substack{\text { c.- Current } \\ \text { F. Future }}}{\substack{\text { and } \\ \text {. }}}$
		X-FER SWITCH		ALARM CARD	$\begin{gathered} \text { CONTROL } \\ \text { CARD } \end{gathered}$	MASTER MODULE		
		100Vac	G	H	L*or LL	Q*	P	
		120Vac	X	A	C* or CC	M*	P	
		230Vac	Z	F	E*or EE	0*	R	
$\begin{aligned} & \hline \text { Redundant } \\ & \text { Upgradable } \\ & \text { 19" Cage } \end{aligned}$	1A	0 or $1^{1,4}$		0 or $1^{1,4}$	$0,1,2^{5}$	0	up to 4^{3}	C
Redundant Upgradable 23" Cage	2A	0 or $1^{1,4}$		0 or $1^{1,4}$	$0,1,2^{5}$	0	up to 5^{3}	C
Expandable 19" Cage	1A	0 or 1		0	0	1	up to 3	C
Expandable 23" Cage	2A	0 or 1		0	0	1	up to 4	C
$\begin{array}{\|c\|} \hline \text { Expandable } \\ 7 \text { " Cage } \\ \hline \end{array}$	7B	0		0	0	1	0 or 1	C
Expandable 9" Cage	9B	0		0	0	1	up to 2	C
Expandable 19" Cage	1B	0		0	0	1	up to 4	C
Expandable 23" Cage	2B	0		0	0	1	up to 5	C
Expandable 7 " Cage	7C	0 or 1		0	0	1	0	C
$\begin{array}{\|c\|} \hline \text { Expandable } \\ 9 \text { " Cage } \\ \hline \end{array}$	9C	0 or 1		0	0	1	0 or 1	F
$\begin{array}{\|c} \hline \text { Split Phase } \\ \text { 19" Cage } \\ \hline \end{array}$	1 E	0		0	0	2	0 or 2	F
$\begin{array}{\|c\|} \hline \text { Split Phase } \\ 23 " \text { Cage } \\ \hline \end{array}$	2E	0		0	0	2	0,2,4	F
$\begin{array}{\|c\|} \hline \text { Split Phase } \\ \text { 7" Cage } \\ \hline \end{array}$	7E	0		0	0	2	0	C
3 Phase 19" Cage	1F	0		0 or 1^{2}	0	3	0	F
3 Phase 23" Cage	2F	0		0 or 1^{2}	0	3	0 or 3	C
3 Phase 9" Cage	9F	0		0	0	3	0	C

[^0]| CONTINUOUS
 POWER | SURGE
 POWER
 $(3$ seconds) | NO LOAD
 POWER | OUTPUT
 VOLTAGE | OUTPUT
 CURRENT | WEIGHT
 LBS. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 W | 2200 W | 20 W | $230+/-6 \%$ | 4.3 | 7.5 |
| 1000 W | 2200 W | 20 W | $117+/-6 \%$ | 8.6 | 7.5 |
| 1000 W | 2200 W | 20 W | $100+/-6 \%$ | 10.0 | 7.5 |

Over Voltage:	Shutoff at maximum input voltage, per input conditions.
Under Voltage:	Shutoff at minimum input voltage, per input
conditions.	
Thermal:	105 C internal temperature. Warning buzz 5 C before shutoff. Unit shuts off: Circuit breaker protected and electronically limited.

INPUT

MODEL VOLTAGE	MINIMUM (TYPICAL)	SYSTEM (TYPICAL)	MAXIMUM (TYPICAL)	TYPICAL EFFICIENCY @ FULL POWER	PEAK EFFEICIENCY @ 1/3 POWER
12 V	$10.4 / 10.6^{*}$	13.8 V	17 V	85%	87%
24 V	$19 / 21 \mathrm{~V}^{*}$	27.6 V	34 V	87%	89%
32 V	$26.5 / 28 \mathrm{~V}^{\star}$	36.8 V	45 V	87%	89%
48 V	$41.5 / 42.5 \mathrm{~V}^{*}$	55.2 V	62 V	87%	89%
66 V	$57.5 / 58.5 \mathrm{~V}^{*}$	75.9 V	94 V	88%	90%
108 V	$94 / 95 \mathrm{~V}^{*}$	124 V	149 V	88%	90%

*indicates typical cut-off voltage/warning buzzer voltage

GENERAL

CONDITIONS	MINIMUM	TYPICAL	MAXIMUM
WAVEFORM	-	SINUSOIDAL	-
LINE REGULATION	-	$.1 \%$	$.5 \%$
LOAD REGULATION	-	$.3 \%$	$.5 \%$
DISTORTION	-	1.5%	2%
FREQUENCY			
	$-.1 \%$	NOMINAL	$+.1 \%$

MECHANICAL

Four case sizes are available; all are: 7 high X 15" deep. 19 inch Wide: (includes hardware for rack or shelf mounting)	
23 inch Wide:	(includes hardware for rack or shelf mounting)
9.97 inch Wide:	(for 1 to 3KW applications:
7 surface mounting only)	
(for 1 inch 2 KW applications;	
surface mounting only)	
Available in other sizes including metric. Call	
factory for sizes.	

*50, 60, 400Hz nominal
See www.exeltech.com for more data regarding MX Series inverters.

İIECH

MX SYSTEMS MONITOR CARD

It is now possible to monitor all of your remote power stations, anywhere, from a single location. You can have up to the minute verification that all of your remote power systems are 100% operational. Your remote power system can tell you that it is currently running at 90% of its rated capacity.

An Exeltech System Monitor card is an upgrade option for any Exeltech MX Series Redundant or Upgradeable System equipped with an Alarm Card or New MX Systems with a Transfer Switch. This new product allows customers to monitor all important aspects of their power system from any IP based Ethernet network.

Customers can monitor all system alarm functions including: Power Module fail, Control Card Fail, Over Temperature, Under DC Voltage, A-B Bus failure, System Breaker Open, and System Failure. Additionally, customers can monitor battery voltage and current usage, and System output voltage and current. All alarm functions are viewable from an LCD display located on the System Monitor Card, and Ethernet connection, or a local Rs232 connection.

Main Menu Items

The main menu consists of 9 different screens. To switch between each menu item press the MENU button. Alarm Details and System Settings have several addition screens available for viewing or changing system parameters, press the SELECT button to choose a parameter for viewing or modification of settings. Hold the MENU button down to return to the main menu screens.

Operation

Normal operation of the Monitor Card is exactly the same as a standard Exeltech Alarm Card with the notable exception of remote monitoring of system status. A blinking LED for the new alarm state announces new alarm states; pressing ether button stops the blinking, and Alarm Details will give a listing of any alarms that have activated. For a complete description of the Exeltech Alarm Card, see the Exeltech System Installation/ Operation manual.

Remote Monitoring

Remote monitoring can be performed via DHCP enabled network, or RS 232 serial port. Monitoring software is included to allow remote sensing of alarm states, however, it is simple to implement custom software to meet any monitoring needs.

Options
Primary
Options
Press Menu to scroll:
System
MajAlm
MinorAlm
SysNorm
Alarm
Press Menu to scroll:
Details \longrightarrow PRESS SELECT \longrightarrow SysPower
Vdc
0.0 V
Idc
0.0 A
Vac
0.0 V
lac
0.0 A
Up H:M:S
HH:MM:SS
System
Settings \longrightarrow PRESS SELECT
Version
Version Number

FAIL,OK
Breaker
ON/OFF
P Mod
OK/FAIL
OverTemp
OK/FAIL
CC Stat
OK/FAIL

Press Menu to scroll:
RS232 Send
ON/OFF
Ethernet Send
ON/OFF
RS232 B aud
Several Selections
Relnit Ethernet
Software Reboot

EXヨTECH

Manufacturer of True Sine Wave P ower Inverters and Related Products

XP SERIES POWER INVERTERS

Made in America, EXELTECH XP SERIES INVERTERS are the most affordable, reliable, lightweight and best regulated, true sine wave inverters available. The XP SERIES inverter will operate any AC load anywhere. Ultra lightweight, yet rugged enough for the most extreme mobile enviroments, the XP SERIES is available in 100Vac, 120Vac, or 230 Vac in $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ or 400 Hz for land, marine or military applications, worldwide.

- TRUE SINE WAVE
- 125 WATTS TO 2000 WATTS
- 12VDC TO 108VDC INPUT
- RACK MOUNT OPTIONAL
- REMOTE SWITCHING
- 21.5 YEARS MTBF

XP SERIES PART NUMBERING SYSTEM

EXELTECH XP SERIES XP MODEL NUMBER

Step 1: Model number always starts \qquad with $X P$.

Step 2: To designate wattage enter the single character code 1 for 125,2 for 250, 6 for $600, \mathrm{~K}$ for $1100, \mathrm{X}$ for 2000

Step 3: To designate output voltage enter the single character

vac output voltage chart		
AC Volts	100	$120{ }^{230^{\circ}}$
Designation	0	1

Step 4: To designate input voltage enter the single character code from the Vdc chart

Vdc INPUT VOLTAGE Chart						
DC Volts	12	24	32	48	66	108
Designation	1	2	B	4	E	I

Step 5: Output frequency is designated by using the first number of the frequency 5 for $50 \mathrm{~Hz}, 6$ for 60 Hz and 4 for 400 Hz

Step 6: This designates revision level (For EXELTECH use only). \qquad
Step 7: To designate option, enter the code from the option chart below. If no option is required please leave it blank.

OPTION CHART	
Option	Code
Conformal coating	07
Low idle current drain	02^{*}
Circuit board with heat sink only	$04^{* *}$
50MS transfer relay	$20^{* * *}$

* available thru a distributor only(only on XP1100W)
**available for OEM's only
***available on XP600 and XP1100 only

EXAMPLE: XP600 with
117 Vac output, 12 Vdc input, 60 Hz with the conformal coating option would require the following model number: XP6-1-1-6-1-07

XP SERIES POWER INVERTER SPECIFICATIONS

OUTPUT POWER

CONTINUOUS POWER	SURGE POWER	NO LOAD POWER	OUTPUT VOLTAGE	OUTPUT CURRENT	WEIGHT LBS.
125 W	150 W	5 W	$100+/-6 \%$	1.2	2
125 W	150 W	5 W	$117+/-6 \%$	1.1	2
$250 \mathrm{~W}^{* *}$	300 W	6 W	$100+/-6 \%$	2.5	5
$250 \mathrm{~W}^{* *}$	300 W	6 W	$117+/-6 \%$	2.1	5
$250 \mathrm{~W}^{* *}$	300 W	7 W	$230+/-6 \%$	1.1	5
$600 \mathrm{~W}^{* *}$	1100 W	8 W	$100+/-6 \%$	6.0	6.5
$600 \mathrm{~W}^{* *}$	1100 W	8 W	$117+/-6 \%$	5.1	6.5
$600 \mathrm{~W}^{* *}$	1100 W	9 W	$230+/-6 \%$	2.7	6.5
$1100 \mathrm{~W}^{* *}$	2200 W	$20 \mathrm{~W}^{*}$	$100+/-6 \%$	11.0	10
$1100 \mathrm{~W}^{* *}$	2200 W	$20 \mathrm{~W}^{*}$	$117+/-6 \%$	9.5	10
$1100 \mathrm{~W}^{* *}$	2200 W	$20 \mathrm{~W}^{*}$	$230+/-6 \%$	4.8	10
2000 W	4000 W	12 W	$120+/-2 \%$	16.7	15

*10W with X2 option , **remote switchable
INPUT POWER

MODEL VOLTAGE	MINIMUM (TYPICAL)	SYSTEM (TYPICAL)	MAXIMUM 1 (TYPICAL)	TYPICAL EFFICIENCY @ FULL POWER	PEAK EFFICIENCY @ $1 / 3$ POWER
${ }^{* * 12 \mathrm{~V}}$	$10.4 / 10.6^{*}$	13.8 V	16.5 V	85%	87%
24 V	$19 / 21 \mathrm{~V}^{*}$	27.6 V	33 V	87%	89%
32 V	$26.5 / 28 \mathrm{~V}^{*}$	36.8 V	44 V	88%	90%
48 V	$41.5 / 42.5 \mathrm{~V}$	55.2 V	62 V	87%	89%
66 V	$57.5 / 58.5 \mathrm{~V}^{*}$	75.9 V	91 V	88%	90%
108 V	$94 / 95 \mathrm{~V}^{*}$	125 V	149 V	87%	90%

*Indicates typical cut-off voltage/warning buzzer voltage
${ }^{1}+/-3 \% \quad$ ** Output Power derated for XPX
GENERAL

CONDITIONS	MINIMUM	TYPICAL	MAXIMUM
WAVEFORM	-	SINUSOIDAL	-
VOLTAGE OUTPUT	-5%	NOMINAL	$+5 \%$
LINE REGULATION	-	0.1%	0.5%
LOAD REGULATION	-	0.5%	1%
DISTORTION	-	1.5%	2%
FREQUENCY	-0.1%	NOMINAL	$+0.1 \%$

See www.exeltech.com for more data regarding XP Series inverters.

MECHANICAL

Case size (HxW×D)
125W case size $=2.16^{\prime \prime} \times 4.93^{\prime \prime} \times 7.90^{\prime \prime}$
(2 lbs)
250W case size= 2.77" $\times 5.23^{\prime \prime} \times 12.03^{\prime \prime}$
(5 lbs)
600W case size $=3.57{ }^{\prime \prime} \times 7.69{ }^{\prime \prime} \times 12.10^{\prime \prime}$
(6.5 lbs)
1100W case size $=3.57^{\prime \prime} \times 7.69^{\prime \prime} \times 15.05^{\prime \prime}$
(10 lbs)
2000W case size $=4$ " $\times 9^{\prime \prime} \times 18^{\prime \prime}$
(15 lbs)

OPTIONS

XP Options:
conformal coating (07 option) low idle current drain (02 option)* circuit board with heat sink only (04 option) many other options available for OEM applications, consult factory.
*1100 watt only
PROTECTION CIRCUITRY

*Over Voltage:	Shut off at maximum input voltage, per input conditions. Automatic reset upon fault correction.
*Under Voltage:	Shut off at minimum input voltage, per input conditions
*Thermal:	105 C internal temperature. Warning buzz 5 C before shut off
Output Short:	Unit shuts off (manual reset)

*Automatically reset

ENVIRONMENTAL

Temperature:	-25 to 30 C full power		
derated 20% per 10 C,			
above 30 C.		Humidity: \quad	5 to 95% non condensing
:---			
Altitude:			
Audible Noise:-200 to 10 k feet full power, than 45dbA derated above 10k			
Cooling:			
600W/1100W Thermo- statically controlled forced air. 125W/250W convection cooled.			
Finish:			
Warranty:			
Painted aluminum			

EXEJECH

BATTERY BACKUP SYSTEM FOR LED TRAFFIC SIGNALS

1000 watts true sinewave power
Power factor corrected charger
3 state temperature compensating charger All digital control
Transfer Switch Internal or External

- Less than $\mathbf{1 0} \mathbf{~ m s}$ transfer time
- Maintenance bypass switch
- Event Counter, Event Timer
- Battery Capacity Meter
- RS-232 Interface
- Wide temperature range (-37C to 74C)
- Low battery shutdown protection
- CALTRANS Compliant (J ULY 2004)
- Lightning/Surge rated to ANSI-C62.41 Level B2

Exeltech BBS Features

Overall system features:

- Integrated Inverter/charger system, designed for seamless operation together
- 1000 watts true sine wave inverter w/less than 2% distortion and peak efficiency is greater than 89%
- External alarm relays for remote monitoring

On battery - energizes when utilizing backup power
Low battery - energizes when batteries reach 40% remaining capacity
On time - energizes when two hours of backup have occurred

- Low battery shutdown protection
- LED display for all parameters

BBS status: Charge mode or BBS mode
Event counter
Accumulated Event time
External alarm relay state
Battery Capacity Meter
Battery voltage indicator

- Internal or External transfer switch option
- External maintenance bypass switch
- Front panel multimeter test points for battery voltage measurements
- Testing and certifications

Manufactured in accordance with ISO 9000/TL 9000 quality systems
Computerized calibration and testing of each system
CALTRANS compliant (JULY 2004)
Lighting/Surge rated to ANSI-C62.41 Level B2
FCC compliant to Part 15 Class A
Totally integrated system with a 20 year MTBF

- Data collection, monitoring, parameter changes via RS-232 interface

BBS charger features:

- Power factor corrected, 3 state battery charger
- Temperature compensation
- Over temperature protection for batteries (50C) halts all charging
- Configurable battery parameters via RS-232

BBS Transfer Switch Features

- Microprocessor controlled operation allows multi-cycle voltage calculation while maintaining a failure detect time of less then 500 microseconds
- Power conditioning maintains optimal utility voltage levels when slight variance occur
- Relay transfer time less than 10 ms , optional relay less then 5 ms

EXEJECH

FC SERIES/FREQUENCY CONVERTER

The frequency converter is operated by simply plugging in the supplied cord to the power input, connecting the load to the output plug provided, and turning the unit on. The input and output receptacle, along with the switch, are mounted on the left rear side of the enclosure.

Specifications are listed on the product label regarding maximum input and output voltages and currents.

The unit is protected against thermal and electrical overload. Electrical overloads will cause the AC voltage to collapse as the inverter limits output current. When the overload is removed, output voltage will return to normal. If the output is short circuited, the unit will latch itself off, turning the front LED red. This requires the power switch to be cycled to reset the condition (turn the unit off then back on again). Should the unit be thermally overloaded, too much load at too high a temperature, it will shut off, leaving the fan running. When the internal temperature cools sufficiently the unit will turn itself back on.

When the unit is operating normally, the LED on the front will indicate green.

FREQUENCY CONVERTER SPECIFICATIONS

INPUT

Continuous Power	Power Factor	Max Line Regulation	Voltage Range	Freq (Hz)	Module Size	Weight LBS.
500 W	>0.98	0.5%	$95-260 \mathrm{Vac}$	$47-63$	A	5.5

EFFICIENCY
$250-500 \mathrm{~W}$
$>82 \% @ 120$
$>85 \% @ 230$

OUTPUT

Model	Typical Voltage	Range	Distortion	Load Regulation
120 Vac 60 Hz	120	$+/-2 \%$	$<2 \%$	1%
120 Vac 50 Hz	120	$+/-2 \%$	$<2 \%$	1%
120 Vac 400 Hz	120	$+/-2 \%$	$<3 \%$	3%
230 Vac 60 Hz	230	$+/-2 \%$	$<2 \%$	1%
230 Vac 50 Hz	230	$+/-2 \%$	$<2 \%$	1%

Protection Circuitry

Thermal:	105C Internal Temperature Output: Current limiting with short circuit protection
Input:	Fuse protected

Mechanical

Three cages are available, all are 7" high by 18 " deep

7 inch: "N" configuration holds 2 power modules
19 inch: "N" configuration holds 5 power modules
23 inch: "N" configuration holds 6 power modules

Module size "A" - 7" high, 3.2" wide, 15.5 " deep

Environmental

Temperature: -25 to 40 C full power, derated above 40C
Altitude: $\quad-200$ to 10 k feet full power, derated above 10k feet
Audible noise: > 45dbA
Cooling: Thermostatically controlled forced air with variable speed fan
Finish: Polyurethane based paint

PV AC MODULE

What is a PV AC Module?

An Exeltech PV AC module is a self-contained, UL-1741 compliant inverter that produces clean, sine-wave electricity for grid-tie applications without the complexity or expense common in large-inverter-based systems.

Advantages Over Conventional Grid-Tie Systems

50\% reduction in wiring requirements! This eliminates:

- DC wiring
- DC cable trays
- DC fusing, overcurrent protection and required holders
- DC connectors
- DC ground-fault detection, protection, and devices
- DC surge protection
- DC combiner boxes
- DC junction boxes and connector blocks
- UL-related DC cabling issues
- PV Series ("blocking") diodes
- PV module bypass diodes

Exeltech PV AC Module mounted to a PV panel. All DC wiring is enclosed in the compartment near the PV frame. The inverter is mounted in the center compartment. AC wiring is located in the right-hand compartment. (Conduit and fittings not shown are customer/installer provided.)

Additional Benefits of Exeltech PV AC Modules

- No batteries to purchase, maintain, or wear out!
- More reliable - single point failure does not disable entire system!
- Simplified system assembly - AC wiring connects directly to AC sub-panel with appropriate breaker!
- Incremental growth capability - no need to purchase many expensive modules at one time.
- Minimizes system design time and expense.
- Significantly decreases system power reduction events due to single-module shading.
- No large or heavy inverters to ship, handle, or mount.
- Easy to install and service - PV panel and inverter are integrated into one unit.
- No imbalance losses due to differences in PV output voltage or current.
- Anti-islanding protection built into every module (per UL1741).
- Microprocessor-controlled Maximum Power Point Tracking (MPPT) operates over entire DC input voltage range.
- Adaptable: J-box or Multi-contact connector input. Knock-outs for standard AC-side conduit fittings.

Electrical Specifications

-Total Harmonic Distortion (THD): < 2\%

- Peak Efficiency: Greater than 91\%
- Rated Power: Up to 150 W output per module
- Input: "12V" PV (15-24V) or "24V" PV (30-48V)
- MPPT voltage range: Full DC input voltage range
-Output: 117VAC, 60 Hz (nominal)

Mechanical Specifications

- Size (in/mm): $1.3 \mathrm{~h} \times 12.5 \mathrm{w} \times 6.25 \mathrm{~d}(33 \times 318 \times 159)$
-Weight: Less than 2.5 lbs (1135 grams)
- Operating Temperature: $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $+85^{\circ} \mathrm{C}\left(+185^{\circ} \mathrm{F}\right)$

Certifications

-Designed to meet:
-UL 1741

- FCC Class B
-NEC 690

Manufacturers of more than 35,000 different true sine wave power inverters, chargers, and related products. 15 years of Exeltech inverter manufacturing experience and support behind every Exeltech product. We provide the emergency backup power systems for the Communications Center in every US Embassy, worldwide...

EXETECH

Manufacturer of Quality Power P roducts

HVGT SERIES HIGH VOLTAGE GRID TIE INVERTER

- 1800 WATTS

- 96\% EFFICIENT
- COMPACT
- LIGHTWEIGHT - MADE IN THE USA

The Exeltech HVGT string inverter provides the lowest cost, highest quality, grid interactive inverter available today. This is accomplished through snapin installation, convection cooled construction with no moving parts, and the use of newly allowed transformerless technology. No transformer means less weight, less cost, and greater efficiency. By incorporating ground fault interrupter (GFI) and integral surge protection within the inverter, there is no need for an external GFI or surge protection to validate the warranty. This reduces the total installed system cost even further. MPPT (Maximum Power Point Tracking) is achieved with a microprocessor. The HVGT complies with UL1741 certification, and is in a NEMA 3R indoor/outdoor enclosure for maximum environmental safety and protection.

HVGT SERIES PART NUMBERING SYSTEM

EXELTECH HVGT SERIES MODEL NUMBER

Step 1: Model number always starts with HVGT.

Step 2: To designate wattage
(15 for 1500)

Step 3: To designate voltage

Vac output Voltage chart			
AC Volts	100	120	230
Designation	J	A	E

Step 4: Output frequency is designated by using the 15
 HVGT

EXEJECH

Manufacturer of True Sine Wave P ower Inverters and Related Products

XO SERIES POWER INVERTERS

- EXPANDABLE
- TRUE SINE WAVE

EXELTECH manufactures some of the most reliable inverter systems available. Power levels are expandable, and modules can be added or replaced in the field. The XO system can be configured for power levels from 2 to 6KW with 120 VAC output, 240 VAC bi-phase or 208 VAC 3 phase.

The XO system is extremely compact and lightweight. Power modules weigh only 12 lbs each. Output voltage is precisely regulated, so that no measurable voltage change occurs on the output as input voltage fluctuates. Typically, less than 1.2 volt change in output voltage will occur when the output load varies from 0 to 100% of rated power.

With distortion of 2% maximum, this inverter offers the cleanest sine wave power available. Models are available which cover 24, 48 and 66VDC battery systems. Custom models can be designed to meet your specific input voltage requirements.

- 2000 WATT MODULES
- EXTREMELY LIGHTWEIGHT
- COMPACT
- MICRO PROCESSOR CONTROLLED

XO SERIES SYSTEM PART NUMBER

EXELTECH XO SERIES MODEL NUMBER

STEP \# 1 Model number always starts with XO

STEP \# 2 Cage assembly

7	9
$7 " \mathrm{XO}$	$9 " \times O$

STEP \# 3 Configuration

1 phase	2 phase	3 phase
B	E	F

STEP \# 4 Enter three asterisks (*)

STEP \# 5 Character assigned by EXELTECH to represent changes or revisions levels.

STEP \# 6 To designate power level, enter the number of modules required. (* if none used)

STEP \# 7 Enter from the following character code

$$
Q=100 \mathrm{Vac}, \mathrm{M}=120 \mathrm{Vac}, \mathrm{O}=230 \mathrm{Vac}
$$

STEP \# 8 To designate input voltage, enter the single character from the VDC voltage chart below:

VDC INPUT VOLTAGE CHART			
DC VOLTS	24	48	66
DESIGNATION	2	4	E

STEP \# 9 Output frequency is designated by using the first number of the frequency. 5 for $50 \mathrm{~Hz}, 6$ for $60 \mathrm{~Hz}, 4$ for 400 Hz

STEP \# 10 Character assigned by EXELTECH to represent revision level of Power Modules.

STEP \# 11 For options, enter two digit code. If no option, enter (00).
Example: XO9B***-3ME6-01

POWER INVERTER SPECIFICATIONS

 PROTECTIONCIRCUITRY

OUTPUT POWER

CONTINUOUS POWER	SURGE POWER	NO LOAD POWER	OUTPUT VOLTAGE	OUTPUT CURRENT per KW	WEIGHT LBS.
2000 W	4000 W	12 W	1	8.3 A	15
4000 W	8000 W	24 W	1,2	8.3 A	28.6
6000 W	12000 W	35 W	1,3	8.3 A	37

1 Single phase 100Vac, 120Vac +/- 2%
2 Bi-phase 100/200Vac, 120/240Vac +/- 2%
33 phase 100/173Vac, 120/208Vac +/- 2%

Over Voltage: Shutoff at maximum input voltage, per input table.
Under Voltage: Shutoff at minimum input voltage, per input table.
Thermal: $\quad 105 \mathrm{C}$ internal temperature. Unit shuts off: electronically limited. Manual reset required.

INPUT

MODEL VOLTAGE	MINIMUM (TYPICAL)	SYSTEM (TYPICAL)	MAXIMUM (TYPICAL)	TYPICAL EFFICIENCY @ FULL POWER	PEAK EFFICIENCY @ 1/2 POWER
24 V	21 V	27.6 V	30 V	$>88 \%$	$>90 \%$
48 V	42 V	55.2 V	60 V	$>88 \%$	$>90 \%$
66 V	57.8 V	75.9 V	82.5 V	$>88 \%$	$>90 \%$

ENVIRONMENTAL

Temperature:	$-25^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$ full power,
derated -17% @ $50^{\circ} \mathrm{C}$ then	
	20% per $10^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$.
Humidity:	5 to 95% non-condensing
Cooling:	Thermostatically controlled variable speed forced air
Finish:	Powder coated
Warranty:	Two years parts and labor.

GENERAL

CONDITIONS	MINIMUM	TYPICAL	MAXIMUM
WAVEFORM	-	SINUSOIDAL	-
LINE REGULATION	-	$.1 \%$	2%
LOAD REGULATION	-	1%	2%
DISTORTION	-	1.5%	2%
FREQUENCY	$-.1 \%$	60 Hz	$+.1 \%$

MECHANICAL

Case size:

7" Case HOLDS UP TO 2 MODULES
9 inches High
18 inches Deep
7 inches Wide
Weight: 28 lbs .
9" Case HOLDS UP TO 3 MODULES
9 inches High
18 inches Deep
9 inches Wide
Weight: 37 lbs .

COMPANY PROFILE

EXELTECH was founded in 1990, based on the philosophy that efficiencies in the manufacturing process through product design, coordinated with facility layout, was paramount to productivity and the key to a quality product. Our mission is to provide leadership electronics and superior customer service through the merging of innovative designs with advanced Manufacturing technology.

Quality through design for manufactureability is a primary goal. Utilizing surface mount technology, all design and manufacturing is performed in our facility, located in FORT WORTH, TEXAS. "Pick and place" machines are set up with parts that are standard to all models, allowing for zero setup time and eliminating errors created when reloading or setting up machines. Only large capacitors and magnetics are placed by hand, in an effort to minimize human error through automation. Hand soldering is eliminated through the use of vapor phase reflow. Point to point wiring is eliminated with extensive use of PCB's to perform interconnectivity functions. The use of extruded aluminum for mechanics has reduced the number of nut/bolt and screw points to onefourth that of previous products, while increasing heat dissipation efficiency and lending a functional form factor to the product.

While design of the products to comply with automated manufacturing processes continues, our people remain the most important part of the quality equation. All employees go through a six month internship before becoming full-time staff members. All employees are cross trained for multi-task capability. Using a PULL system, each station performs a quality check on the performance of the previous station. Data for first time yield and DPU is recorded and analyzed by each station and test bench in an ongoing effort to yield a zero defect process. Upon final assembly, all products then proceed to A.L.T. for "accelerated life testing" to minimize "infant mortality". Packaging and shipping procedures are constantly evaluated to reduce damage.

All repairs are performed at the factory for quality feedback and input for future design. The net result of these philosophies is a line of products that demonstrates an MTBF (mean time between failure) in excess of 20 years and offers the most competitively priced true sine wave inverters available anywhere.

Our commitment to quality and total customer satisfaction has allowed EXELTECH to become innovators in the DC to AC power product market. A few of our "firsts" include; The smallest, lightest high frequency PWM sine wave inverter. The first " $\mathrm{N}+1$ " redundant inverter systems, "hot" swapable capability and "modular" design. Our many satisfied customers include AT\&T, BROOKHAVEN NATIONAL LABS, DIGITAL EQUIPMENT CORPORATION, MOTOROLA, MCI, GTE GOVERNMENT SYSTEMS and numerous federal and state agencies. We are found quite literally, around the world. We also provide back up power for the communications room in every U.S. Embassy worldwide.

Give us the opportunity to help solve your power problem.

7317 J ack Newell Blvd North Fort Worth, Texas 76118-7100 voice- 817.595.4969 fax- 817.595.1290 toll free- 800.886.4683

[^0]: ${ }^{1} 1$ per phase
 ${ }^{2}$ Alarm with a subset of functions (multi-phase option A13)
 ${ }^{3}$ System is not fully redundant with less than 3 power modules
 ${ }^{4}$ Minimum 1 Alarm Card or 1 X-fer Switch required for redundant system
 ${ }^{5}$ Minimum 2 Control Cards for redundant system.

